If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-200x+625=0
a = 8; b = -200; c = +625;
Δ = b2-4ac
Δ = -2002-4·8·625
Δ = 20000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20000}=\sqrt{10000*2}=\sqrt{10000}*\sqrt{2}=100\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-100\sqrt{2}}{2*8}=\frac{200-100\sqrt{2}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+100\sqrt{2}}{2*8}=\frac{200+100\sqrt{2}}{16} $
| 22m-7=21 | | 5(x+2)-3x=2(2+5) | | 21c+17=80 | | x-(0)=7 | | 2x-5(x-3)=-2+4x+3 | | 7=-8+5y | | 8(x-3)+5=10 | | 5x+4/4x+6=9x+7/4x-3 | | 3x-1=-3x+1 | | 2x–4(4-9x)=4(7x+8) | | 2/5x+5/6=7/8+1/3x | | 9x-5+4x=34 | | 4(x+3)-4=8(1/2x-1) | | 2(x-1)+3-2×=7 | | x/6-1/3=21 | | 25x=7x+9 | | 1950+33x=1430+43x | | 9(z+1)-2(z-2)=2(z-2)+4(z-1) | | 4/5m-1/5=3/40 | | 18x(-x)=95 | | 2c+6=1 | | 21/9=56/n | | 10=a/9-3 | | 6x+25=2x+3 | | 1.5d-3=8 | | 3/10x2/5=-1 | | x=56+0.5/2 | | 5(5x+6)+6(6x+6)+5=61x+72 | | 8-5(2x+1)=6x-13 | | 39=13/100b | | 5.5+2x=118 | | −3(3+x)+4(x−6)=−4−3(3+x)+4(x−6)=−4. |